【报告】2021年碳纤维行业深度报告_压铸模具制造_乐鱼体育网页版在线登录入口
压铸模具铝压铸模具

【报告】2021年碳纤维行业深度报告

时间: 2024-03-20 16:44:42 |   作者: 压铸模具制造

  材料发展史与人类发展史紧密相连,而新材料更是推动人类从“自然王国”走向“自由王国”的强大动力。材料通常被定义为用来制作有用物件的物质,人类对材料的认知和利用能力直接决定了社会形态与人类生活水平。在 当代,材料、能源和信息慢慢的变成了构成社会文明和国民经济的三大支柱,而其中材料更是科学技术发展的物质基础和技术先导。

  纵观整个材料发展史,以时间为维度可将其归纳为石器/青铜器/铁器/钢铁/硅/新材料这六个发展时期。其中,随着 20 世纪下半叶新技术革命的开启,新材料已然成为各高新技术领域发展的助推器,例如计算机技术依赖于半 导体材料的工业化生产,宇航工业则需要大量高温高强度结构材料与之配套,而现代光纤通信更是以低消耗的光导纤维为基石。

  碳纤维被誉为 21 世纪新材料之王,是材料皇冠上的一颗璀璨明珠。碳纤维(Carbon Fiber,简称 CF)是一种含碳量高于 90%的无机纤维。由有机纤维(粘胶基、沥青基、聚丙烯腈基纤维等)在高温环境下裂解碳化形成碳主 链机构而制得。作为新一代增强纤维,碳纤维具有非常出色的力学性能和化学性能,既具有碳材料固有的本性特征,又兼备纺织纤维的柔软可加工性,因此被大范围的应用于航空航天、能源装备、交通运输、体育休闲等领域:

  质量轻:作为一种性能优异的战略性新材料,碳纤维密度与镁和铍基本相当,不到钢的 1/4,采用碳纤维复合材料作为结构件材料可使结构质量减轻 30%-40%。

  高强度、高模量:碳纤维的比强度比钢高 5 倍,比铝合金高 4 倍;比模量则是其他结构材料的 1.3-12.3 倍。

  膨胀系数小:大多数碳纤维在室温下的热膨胀系数为负数,在 200-400℃时为 0,在小于 1000℃时仅为 1.5 ×10-6 /K,不易因工作时候的温度高而膨胀变形。

  耐化学腐蚀性好:碳纤维纯碳含量高,而碳又是最稳定的化学元素之一,导致其在酸、碱环境中表现均十分稳定,可制成各类化学防腐制品。

  抗疲劳能力强:碳纤维结构稳定,据高分子网统计,其复合材料经应力疲劳数百万次循环试验后,强度保留 率仍有 60%,而钢材为 40%,铝材为 30%,玻璃钢则只有 20%-25%。

  碳纤维复合材料是碳纤维基础上的再次强化。虽然碳纤维可单独使用并发挥特定功能,然而其终究属于脆性材料,只有与基体材料结合形成碳纤维复合材料,才能更好地发挥力学性能,承载更多负荷。

  按原丝类型分类:聚丙烯腈(PAN)基、沥青基(各向同性、中间相);粘胶基(纤维素基、人造丝基)。其 中,聚丙烯腈(PAN)基碳纤维占据主流地位,产量占碳纤维总量的 90%以上,粘胶基碳纤维还不足 1%。

  按力学性能可分为通用型和高性能型:通用型碳纤维强度在 1000MPa、模量在 100GPa 左右;高性能型又 分为高强型(强度 2000MPa、模量 250GPa)和高模型(模量 300GPa 以上),其中强度大于 4000MPa 的 又称为超高强型,模量大于 450GPa 的称为超高模型。

  按丝束大小可分为小丝束和大丝束:小丝束碳纤维初期以 1K、3K、6K 为主,逐渐发展为 12K 和 24K,主 要应用于航空航天、体育休闲等领域。通常将 48K 以上碳纤维称为大丝束碳纤维,包括 48K、60K、80K 等, 主要使用在于工业领域。

  碳纤维生产流程复杂,对设备和技术方面的要求极高。各环节精度、温度和时间的控制都将极大影响最终成品质量。聚 丙烯腈碳纤维因制备流程相对简单、生产所带来的成本低、三废处便捷等特点成为现阶段应用领域最广、产量最高的碳纤 维。其主要的组成原材料丙烷可从原油中制得,聚丙烯腈碳纤维产业链包含从一次能源到终端应用的完整制造过程。

  丙烯经氨氧化后得到丙烯腈,丙烯腈聚合和纺丝之后得到聚丙烯腈(PAN)原丝;

  聚丙烯腈经过预氧化、低温和高温碳化后得到碳纤维,并可制成碳纤维织物和碳纤维预浸料,用来生产碳纤 维复合材料;

  碳纤维经与树脂、陶瓷等材料结合,形成碳纤维复合材料,最后由各种成型工艺得到下游应用需要的最终产 品;

  原丝质量、性能水平直接决定了碳纤维的最终性能。因此,提高纺丝液的质量,优化原丝成型的各项因素成为制 备高品质碳纤维的关键节点。

  据《聚丙烯腈基碳纤维原丝生产的基本工艺研究》描述,纺丝工艺最重要的包含三大类:湿法纺丝、干法纺丝和干湿法纺丝。目前,国内外生产聚丙烯腈原丝的工艺主要是采用湿法纺丝和干湿法纺丝,其中湿法纺丝的应用最为广泛。

  湿法纺丝首先将纺丝液从喷丝孔挤出,纺丝液以细流的形态进入到凝固浴中。聚丙烯腈纺丝液的成丝机理是:纺 丝液中与凝固浴中 DMSO(二甲基亚砜)的浓度存在比较大差距,而凝固浴和聚丙烯腈溶液中水的浓度也存在巨 大差距。在以上两种浓度差的相互作用下,液体之间开始双向扩散,通过传质、传热、相平衡移动等过程最终凝 结成原丝。

  原丝生产中 DMSO 残余量、纤度、单丝强度,模量,伸长率、含油率、沸水收缩率成为影响原丝质量的关键因素。以 DMSO 残余量为例,其对原丝表观性状、截面状态、最终碳纤维产品的 CV 值等均有影响,DMSO 残余 量越低,产品的性能越高。生产中主要通过水洗的方式去除 DMSO,因而如何控制水洗温度、时间、脱盐水用量 和水洗循量等因素就成为重要的环节。

  高质量的聚丙烯腈原丝应具有以下特征:高密度、高结晶度、适当的强度、圆形截面、较少的物理缺陷,同时具 有光滑的表面和均匀致密的皮芯结构。

  碳化、氧化环节温度控制是关键。碳化氧化是原丝制作成碳纤维最终产品的必备环节,该环节需对温度的精度、 范围进行准确控制,否则将显著影响碳纤维产品的拉伸强度,甚至造成断丝现象:

  预氧化(200-300℃):预氧化环节通过在氧化性气氛中施加一定张力,对 PAN 原丝进行缓慢温和的氧化,在 PAN 直链的基础上形成大量环装结构,从而达到可以耐受更高温度处理的目的。

  碳化(最高温度不低于 1000℃):碳化过程需在惰性气氛中进行。碳化初期 PAN 直链断裂,开始进行交联反 应;随着温度逐渐上升,热分解反应开始,释放出大量小分子气体,石墨结构开始形成;温度进一步上升后, 碳元素含量迅速提高,碳纤维开始成型。

  石墨化(处理温度 2000℃以上):石墨化并非碳纤维制作必备过程,为可选环节。若期望碳纤维拥有高弹性模 量,则需进行石墨化;若期望碳纤维获得高强度,则无需进行石墨化。石墨化环节中,高温使纤维内部形成 发达的石墨网面结构,通过牵伸对结构进行整化从而得到最终产品。

  高技术壁垒赋予下游产品高附加值,航空复材价格较原丝翻 200 倍。由于碳纤维制备难度高,工艺复杂,因此 其产品越往下游附加值越高,尤其是应用于航空航天领域的高端碳纤维复材,因下游客户对其可靠性、稳定性要 求十分严苛,产品价格也较普通碳纤维呈几何倍数增长。

  据江苏恒神公开转让说明书(2015 年)统计,同一品种原丝、碳纤维、预浸料、民用复材、汽车复材和航空复 材每公斤价格分别约为 40 元、180 元、600 元、不到 1000 元、3000 元和 8000 元,每经一级深加工产品价格 都将实现飞跃,航空复材价格较原丝更是翻了 200 倍。

  碳纤维生产成本较高,是新兴材料,更是“贵族”材料。可设计性较强的碳纤维属于新兴材料,但较高的原丝生 产成本、环保投入及生产运输费用为其贴上了“贵族材料”的标签。据《碳纤维产业化发展及成本分析》论述, 较高质量的 PAN 原丝投入与碳纤维产出比约 2.2:1,较低质量的原丝与碳纤维产出比约 2.5:1,叠加聚合、喷丝、 碳化氧化等过程对环境、综合技术等要求较高,进一步导致碳纤维生产成本居高不下。

  制造费用通常占碳纤维生产总成本的 70%以上。根据中简科技、光威复材公司年报,其碳纤维生产成本主要由 材料、人工、制造费用等构成,2016-2019 年上述两公司碳纤维产品制造费用占其成本均在 70%以上,成为生 产过程中的主要开支。

  聚合:该阶段主要包括由原料和生产物资消耗构成的直接生产成本、由纯化与输送原料、聚合、过滤/输送原液、回收单体/溶剂等成本构成的生产过程成本,以及由蒸汽、电力、水、配套设施运维等成本构成的综 合生产成本。

  纺丝:生产成本集中在过滤/ 输送聚合液、纺丝、净化等。产业链中,原丝一般在碳纤维成本中占比 51%。

  碳化氧化过程:成本主要集中在处理所需原材料(包括上浆剂、电、氮气、循环水)、配套设施运维、车间 洁净化,及炭化废气处理等成本。

  1)采用干喷湿法代替传统湿法纺丝:干喷湿纺为纺丝液从喷丝孔出来后先经过干段空气层或氮气层后才进入凝 固液中进行凝固的工艺技术。对比传统湿法纺丝,该方法可将纺丝速度从每分钟 100 米提高至 300 米,并使固 含量提高至 22%以上。据《PAN 基碳纤维生产成本分析及控制措施》表述,新纺丝工艺的使用可在降低碳纤维 原丝成本(降低 75%)的同时提高产量(2-8 倍左右)。

  2)采用新技术缩短预氧化时间:美国能源部橡树岭国家实验室(ORNL)研发的等离子体预氧化法可使预氧化 时间缩短至 25-35 分钟(一般需要 80~120 分钟),该方法可使能耗下降 75%,生产成本降低 20%,并适用于所 有规格的碳纤维生产。此外,采用流态化加热、热辊接触式干燥等新技术均可有效降低生产成本。

  3)更换炭化炉材料、提高碳化环节热利用率:美国哈泊公司生产的炭化炉使用绝缘或耐火材料替代传统水冷却 操作,持续降低设备的热量损失;此外,据《PAN 基碳纤维制备成本构成分析及其控制探讨》表述,采取余热多 级利用等新技术可有效降低设备能耗,使碳纤维每吨成本降低 9500 元。

  提升产量可带来规模效应,有效降低碳纤维生产成本。据《碳纤维产业化发展及成本分析》统计,原丝和碳纤维 的产能和生产成本呈反比关系。随着产能的扩大,原丝和碳纤维产线直接生产成本的增幅显著小于单耗成本、固 定资产折旧和流动费用等成本的降幅,千吨级碳纤维产线每年成本较百吨级产线 我国碳纤维产业方兴未艾,潜力巨大

  在师昌绪院士的动员和国家大力支持下,科技部决定设 立碳纤维专项,并成立专家组,将碳纤维列入 863 计划新材料领域。此外,大量民间资本的涌入也催生出一 批碳纤维生产企业,据《2019 全球碳纤维复合材料市场报告》统计,2000-2010 年,拥有碳纤维项目的科 研院所和生产单位达 40 家以上,投资规模超过 300 亿元,全世界碳纤维设备制造厂也迎来了中国盛宴。

  此外,该时期优质企业迎来春天:光威集团与中简科技成功上市,中复神鹰扭亏为盈,吉林化纤成为国内原丝龙头,行业实现了 T700 级碳纤维批量化生产和 T800 级碳纤维、M40J 石墨纤维的工程化制备,突破 T1000 级碳纤维、M50J、M55J、M60J 石墨纤维实验室制备技术,具备开展下一代纤维研发的基础。

  政策扶持加快研发与产业化进程,产品竞争力不断提高,碳纤维行业进入发展快车道。

  我国政府从 70 年代即开 始大力支持国产碳纤维的发展,由张爱萍将军组织召开的“7511”会议奠定了国家扶持国产碳纤维发展的基础, 而 “863”计划更是在政策层面为碳纤维国产化替代指明了前进方向;通过“十五”、“十一五”、“十二五”三个五年 计划,国家强力支持了国产碳纤维的技术攻关、工程产业化和应用牵引,使国产碳纤维的发展取得长足进步。

  我们认为,碳纤维作为新材料的“无冕之王”,今后将进一步受到国家政策的长期扶持,行业环境有望不断改善, 为技术突破、产品性能升级的注入源源不断的强大动力。

  1)大量研发投入促进核心技术突破,迅速提高碳纤维性能与竞争力,加快产品升级换代;

  2)高端产品满足并进一步培育下游需求,应用端不断向高端领域延展,实现需求的“质”“量”齐升;

  3)旺盛且持久的订单显著提升企业业绩,改善其现金流,并吸引优质资本持续注入;

  4)政策倾斜叠加现金流充沛,企业将投入更多研发资源并扩大生产规模,有效降低生产成本。

  以上述产业发展逻辑作为框架,现阶段我国碳纤维产业在核心技术装备、产品性能、生产成本与规模等方面较美、日仍有很大的差距,具体表现为以下三点:

  1)碳纤维研制、应用等基础科学问题尚未探明,高端碳纤维及其复材较国外仍有代差。我国碳纤维研究虽起步 早,但由于早期缺乏腈纶等纤维制品的工业生产基础,叠加国外严格的技术封锁,导致我国在碳纤维工艺、成分、结构、性能等技术领域仍有认知盲点。

  据《中国高性能碳纤维产业的创新发展》论述,国外航空航天等领域已经大规模应用以 T800 级碳纤维为主要增强体的第 2 代先进复合材料,而中国总体上仍处在第 1 代先进复合材料扩大应用阶段,T800 级碳纤维的工程化 应用尚处研制阶段。中国高性能纤维及其复合材料与国外先进水平存在代差。

  2)产业化工艺与装备核心技术仍未有本质突破,导致企业有产能无销量,进口依赖严重。

  据《2019 全球碳纤维复合材料市场报告》统计,2019 年我国碳纤维需求约 3.8 万吨,其中进口量占 68%;此 外,2019 年我国碳纤维运行产能为 2.6 万吨而销量仅为 1.2 万吨,销量/产能比仅为 34%(国际通常在 65%-85%)。

  我们认为,碳纤维产业化程度不高一方面归因于前述基础科学未完全探明,另一方面则由于企业与科研院所尚未建立有效合作机制导致“产”与“研”相分离。此外,因装备国产化不足、对引进装备二次改造能力弱,只能使 工艺去迎合装备条件,从而失去以工艺为核心的产业化准则,进一步导致产品质量稳定性差、产能释放率低。

  3)性能不足、产业化程度低等问题导致下游“不会用”、“用不好”问题突出,未对需求升级形成有效牵引。

  我们认为,我国碳纤维下游需求结构失衡的主要原因在于国内大多数企业未形成碳纤维生产的全流程覆盖,产业 链各环节较为分散,导致企业缺乏对碳纤维从设计到制造再到下游应用的集成能力,最终使得下游应用难以升级, 未对需求产生持续的拉动作用。

  碳纤维始于美国,兴于日本,产业整合、应用场景不断扩大是现阶段行业发展主题:

  20 世纪 50 年代,美苏争霸期间,美国为研发大型火箭和人造卫星以及全面提升飞机性能,急需新型结构材料和耐烧蚀材料,碳纤维又重新出现在材料科学舞台。

  1959 年,日本大阪工业试验所近藤昭男博士发明 PAN 基碳纤维制备技术,随后 60 年代日、英率先开始 PAN 基碳纤维技术攻关,而同时期美国还在攻克粘胶基技术,导致其 PAN 基碳纤维研究起步较晚。

  1970-1990 年,碳纤维工程化、工业化技术先后被攻克,产品逐渐系列化,应用场景取得重大突破。

  同时期,碳纤维复材实现了于 航空航天(军、民用)结构件上的工程化应用,并率先在军机上实现批量化生产,成为碳纤维腾飞的基石。跨入 80 年代,世界碳纤维单产线产能突破千吨/年,东丽产品谱系日益丰富(T300、T800、T1000、M60J),以 波音、空客为代表的民用航空对碳纤维需求萌芽,1982 年 T300 率先于 B757、B767 及航天飞机上得到应用。然而,英国由于缺乏应用支撑开始以转让技术为主,将技术分别转让给中国、印度、俄罗斯和巴西。

  1990-2000 年,碳纤维迎并购浪潮,美、日地位进一步稳固,寡头局面初步形成。

  该时期各大碳纤维厂商开 始抢占市场份额,美国赫氏并购了美国赫拉克勒斯的碳纤维产业;美国石油巨头阿莫科整合了大部分美国的 碳纤维资源,不仅包括美国联碳公司还有东邦与美国塞兰尼斯公司合作的碳纤维资产(2001 年变更为氰特 CYTEC)。德国石墨巨头西格里收购了英国考陶尔兹留下的 RK carbon,至此碳纤维拓荒者——英国考陶尔 兹退出历史舞台。

  进入 21 世纪,碳纤维产业整合仍在继续,下游应用向风电、汽车等新兴领域加速延展。

  进入 21 世纪,行业整合仍在延续,SGL 从阿尔笛处拉收购了合资碳纤维的股份、日本东邦收购了美国福塔菲尔碳纤维、日本东丽收购了卓尔泰克;与此同时航空航天、汽车、风力发电等领域碳纤维应用急剧扩大,号称碳纤维飞机 的 B787 和 A350 于 2011 年和 2014 年完成首架交付,2010 年宝马与西格里合资建碳纤维厂试图彻底实现 电动汽车轻量化,由于拉挤板成功应用于叶片梁帽,风电巨头维斯塔斯对碳纤维需求空前增长。

  以史为镜,我们认为技术革新、政策护航与应用拓展是世界碳纤维发展的最核心变量:

  与此同时,日本国内较早实现了产业联盟,成员覆盖了完整的碳纤维产业链,如新构造材料技术研究联盟 (ISMA),其共有 39 个成员,37 家为企业,1 家为国立研究所,剩余 1 家为国立大学。通过产、学、研的 深度结合,日本在碳纤维中间材料技术、成型技术、连接技术与回收技术领域均实现了重大突破,成为世界 碳纤维强国。

  20 世纪以来,美、日均在政策层面推波助 澜,促进碳纤维产业的发展。如日本在包括“能源基本计划”、“经济成长战略大纲”和“京都议定书”等多 项基本政策中都将碳纤维作为重点推进项目,在政策支持下,日本碳纤维行业得以更有效集中各方资源,推 动产业共性问题的解决。此外,美国国防部高级研究计划局在 2006 年启动了先进结构纤维项目,美国能源 部 2014 年也为多个碳纤维项目提供了高达 1130 万美元的资助。

  企业层面,美、日亦提供政策“方便”以不断优化行业环境。例如 20 世纪 80 年代,美国碳纤维公司大多采 用外部治理模式,但由于碳纤维材料的特殊性其发展往往受到别国技术的制约,美国国内公司一度濒临倒闭。1988 年美国国防部推出了以碳纤维等关键材料本土化为核心的国家战略,指出碳纤维等国防工业关键材料 必须自给自足,从而帮助国内碳纤维企业走出了困境。

  碳纤维最初被用于白炽灯灯丝,而后由于美、苏军事争霸,碳 纤维开始在军用航空航天领域发光发热,成为武器装备的减重利器。此后,随着 PAN 基碳纤维技术的突破、 叠加产能提升带来的规模效应,碳纤维生产所带来的成本大幅降低,碳纤维开始在民用航空、体育休闲等领域大放异 彩。现阶段,以风力发电、压力容器、新能源汽车等新为代表的新兴产业轻量化需求旺盛,成为碳纤维行业 发展的新驱动。我们认为,应用领域的持续拓宽一方面将倒逼碳纤维产业化、工程化技术进步,另一方面也 将吸引更多优质企业的涌入,为行业发展提供不竭动力。

  1)提前洞悉碳纤维潜在应用价值,并维持高研发 投入,为公司未来厚积薄发奠定基础;

  2)乘航空发展之风,率先实现高端碳纤维批量化、规模化生产,同时在 全球范围内积极扩充产能,不断提升公司市场占有率;

  3)以航空为基,横向布局风力发电、汽车等高端民用领 域,真正实现多点开花。

  20 世纪 70 年代后期,石油价格飙升,民航公司急需轻量化增强材料以减少机身 重量,1975 年和 1987 年,东丽碳纤维分别应用于波音 737 的辅助承重结构和空客 A320 的主承力部件中。据波音公司“高拉伸强度和弹性条件下较铝轻 30%”的需求,东丽开发出 T800 等高端碳纤维并于上世纪 90 年代起陆续用于波音 767、777、787 及空客 A350 上

  。航空需求的爆发加速东丽千吨产线的构建和万吨产 量的释放,公司实现由前期亏损至稳定盈利的转变。产能扩张叠加横向布局,碳纤维生产体系持续完善:

  1)为应对航空等领域碳纤维需求的攀升,东丽一直致力于全球布局以实现产需匹配。

  1972 年东丽在爱媛 工厂新设月产 6 万吨的生产设备,并通过 UCC 公司构建美国市场的售渠道;1982 年设立 Soficar 公司, 该公司 1985 年于西班牙设立工厂投产;1992 年于西雅图市郊成立 TCA 公司,1997 年在美国迪凯特成 立 CFA 公司并建设工厂。东丽由此确立了横跨日本、欧洲和美国 3 大地区的全球运营体制。2012 东丽 决定年产量增加 6000 吨,集团年产量扩大至 2.71 万吨,2014 和 2015 年也分别实现了增产。

  2)东丽亦利用自身技术与市场优势拓展高端民用领域,稳固全球碳纤维龙头地位。

  汽车方面,2010 年, 东丽与德国 Daimler 公司签订了汽车零部件碳纤维复材共同开发合同;此外,丰田与本田分别于 2014 和 2016 年发布了氢燃料汽车,车身均采用了东丽碳纤维材料;风电方面,东丽 2014 年收购了 Zoltek公司,发力以风电涡轮机叶片为主要用途的大丝束领域。

  赫氏是美国最大的碳纤维生产商和复合材料供应商,2019 年 赫氏总营收 23.6 亿美元,其中碳纤维复材收入为 18.6 亿美元,占比近 80%;2006-2019 年赫氏碳纤维复材营 业利润由 1.2 亿美元上升至 4.1 亿美元,CAGR 达 10%,营业利润率由 15%上升至 22%,盈利能力不断增强。

  与东丽多元化的材料业务不同,赫氏聚焦复合材料应用 70 余年,公司发展史亦是美国航空航天历史的缩影:

  赫氏成立于 1946 年,1953 年其产品便用于复合材料制造的 第一架轰炸机和战斗机,在 1961 年经历了军费削减导致的销售下滑后,1965 年美越战争重新推动公司蜂 窝结构复合材料业务发展。1993 年由于经营问题,公司申请破产保护,多方筹资筹得 5000 万美元后于 1995 年 2 月摆脱破产保护。

  民品方面,空客 A380、A320、H160 直升机、波音 787 Dreamliner、747-8 等机型均采用了赫氏碳纤维复合材料;军品方面,赫氏为 F35、V-22(鱼 鹰)倾斜旋翼飞机、UH60M 黑影、AH-64 阿帕奇、A400M 军事运输机、大黄蜂战机等军机提供碳纤维复合 材料;此外,赫氏也参与了多项美国国家空探索计划如阿波罗登月、哥伦比亚航天飞机制等,如正是航空航 天领域业务的不断增长,使得赫氏稳坐美国碳纤维及其复材制造商龙头地位。

  2)航空航天是碳纤维制造的试金石,批量化生产带来的规模效应是企业蜕变的关键;

  这是全球碳纤维发展 60 余年来需求量首次突破 10 万吨大关,其直接反映了碳纤维下游需求的持续扩张。随着 各国对碳纤维投入加大,核心技术将不断突破,当绝大部分核心技术被掌握后,下一个 10 万吨需求增长的用时 间将急剧缩短,据《2019 全球碳纤维复合材料市场报告》预测,2025 年全球碳纤维需求量将达到 20 万吨,2030 年将达到 40-50 万吨。

  2019 年航空航天领域碳纤维需求量 2.35 万吨,同比增长 12%,占总 需求量的 23%。由于航空航天高端碳纤维单价较高,因此该领域 2019 年需求金额达到 14.1 亿美元,占需求总 金额的 49%。据《2019 全球碳纤维复合材料市场报告》披露,2019 年航空航天领域碳纤维需求的增加主要来源 于波音 787 和空客 A350 产能的扩张。

  据赛奥碳纤维技术统计,2014-2019 年全球来自风电叶片领域的碳纤维需 求由 0.6 万吨上升至 2.55 万吨,CAGR 达 33.6%,增速强劲。2019 年来自风电叶片领域的碳纤维需求占总量的 25%,然而由于该领域碳纤维单价较低,对总体金额贡献不显著,仅占总需求价值量的 12%。

  2019 年风电叶片高增长拉动行业整体需求。2019 年我国风电叶片碳纤维需求量为 1.38 万吨,同比增长达 72.5%,占总需求量的 36.5%。其中,国产碳纤维约 1000 吨,相较 2018 年的完全进口,迈出了国产替代 的第一步。

  体育休闲领域为国内碳纤维需求最大来源。2019 年中国大陆与中国台湾体育休闲领域碳纤维需求合计 1.4 万 吨,同比增幅 4%,占总需求量高达 37%,2014-2019 年体育休闲领域一直是我国碳纤维需求最大来源。

  航空航天占比仅为 3.7%,较世界平均水平差距显著。2019 年我国航空航天碳纤维需求 1400 吨,较 2018 年上升 400 吨。2014-2019 年我国航空航天领域碳纤维需求占比维持在 2%-4%,较世界平均的 22%-24% (2014 年为 29%)差距显著。

  当前,由于碳纤维性能的不断提高和基体树脂增韧性技术的突破,碳纤维复合材料正逐步取代传统金属材料被广泛应用于航空制造业中,特别是高强中模、大伸长碳纤维,能够显著提高冲击后的压缩强度和耐热/湿性,成为飞 机结构材料的不二之选。

  理论上 1kg 碳纤维复合材料可代替 3kg 的铝合金,对于直升机而言,碳纤维不仅具有高比强度和比模量,且具有优异的阻尼特性,即不易起振,起振后能迅速吸收动能并停止下来,这可降低飞行载荷在直 升机悬翼上产生的交变动值。此外,碳纤维复合材料具有突出的耐疲劳性,静强度与疲劳强度比为 0.6-0.7, 而玻璃纤维仅为 0.3,芳纶纤维为 0.5。

  以 MBB 公司研制的 BK117 直升机为例,该机型碳纤维复合材料占比高达 75%,于使用复合材料的构件, 平均减重 33%,平均零件数目减少 79%。同时,我国由哈尔滨飞机制造公司生产的直-9 型直升机复合材料 用量也超过了 60%,该机不仅武装了驻港部队,而且参加了上海合作组织在俄罗斯举行的反恐演练。

  以导弹为例,据《碳纤维及石墨纤维》表述,美国、日本、法国的固体发动机壳体主要采用碳纤维复合材料。美国 MK 型、SICBM 型、三叉戟Ⅰ型机动洲际弹道导弹鼻锥和发动机喷管喉衬都采用了 3D C-CFRP(以碳纤维 3 向编织物为胚体的碳纤维复合材料),卫兵型、SPI 型反弹道导弹鼻锥采用了 3D C-CFRP,民兵Ⅲ鼻锥也采用了 细编穿刺 C-C 复合材料。MX 弹道导弹第三级发动机喷管及三叉戟 II 型(D-5)的第一、二级发动机喷管都采用了 C-CFRP。美国“北极星”、“战斧”、三叉戟 II 型(Trident-II,D-5)导弹的固体发动机壳体采用了 CFRP。法国 M51 导弹的一级发动机外壳由碳纤维复合材料编织而成。

  在早期 A310、B757 和 B767 上,碳纤维复合材料占比仅为 4%-7%,随着技术的不断进步,碳纤维复合材料逐 渐作为次承力构件和主承力构件应用在客机上,其质量占比也开始逐步提升。至 A380 时,复合材料占比达到 25%,具体应用于客机主承力结构部件如主翼、尾翼、机体、中央翼盒、压力隔壁等和次承力结构部件如辅助翼、方向舵及客机内饰材料等,开创了先进复合材料在大型客机上大规模应用的先河。

  在最新的 B787 和 A350 机身上,复合材料的用量达到 50%以上,有更多部件使用碳纤维,例如机头、尾翼、机 翼蒙皮等,使碳纤维需求量极大提升。

  据《World Airforces 2020》统计, 2019 年我国军机总量为 3210 架,虽位列世界第三但仅为美国的四分之一。目前我国以歼-7、歼-8 为代表的二 代战斗机仍是主力,占比达到 58%,四代机占比仅为 1%,而美军现役已无二代战斗机,其三、四代机型占比分 别为 87%和 13%。我们认为,未来我国军机升级换代将是大势所趋。

  2)据《先进战斗机结构选材与制造工艺需求分析》内容,将军 机结构系数设为 31%-34%。

  国产 C919、ARJ21 订单不断增加,支撑民用碳纤维复材市场未来需求。

  据中国之声 2020 年 5 月披露,C919 当前累计客户 28 家,订单总数已有 815 架;商飞亦收到来自 22 家客户合 计 596 架 ARJ21-700 飞机订单。经测算,当前国产客机在手订单兑现将产生 1383 吨碳纤维复材需求,市场规 模超过 55 亿元。

  据中国航空工业发展研究中心发布的《2020-2039 年民用飞机中国市场预测年报》预测,为满足运量增长和替换 退役飞机需求,至 2039 年中国客机机队规模将达 8854 架,其中因运量需求而新增的客机 5208 架,替换退役 客机 2368 架,剩余 1278 架为存量客机,市场价值超万亿美元。

  风力发电系统主要由发电机、叶片、塔架和 控制系统组成。其中,复合材料叶片是发电机的核心部件之一,叶片成本约占发电机系统成本的 18%-22%。由 于风力发电机的电能与叶片长度成正比,故此为提高发电功率需要增加叶片长度,叶片重量也随之增加,为更好 地平衡叶片重量与长度,碳纤维复合材料成为风电叶片的理想选择。

  据赛奥碳纤维技术统计,2014-2019 年全球来自风电叶片领域的碳 纤维需求由 0.6 万吨上升至 2.55 万吨,CAGR 达 33.6%,增速强劲。2019 年来自风电叶片领域的碳纤维需求占 总量的 25%,然而由于该领域碳纤维单价较低,对总体金额贡献不显著,仅占总需求价值量的 12%。

  2019 年,全球陆上风电新增装机容量为 54.2GW, 同比增长 17% ;累计装机规模迈过 600GW 这一新的 里程碑,达到 621GW。其中,我国陆上风电新增并网容量为 23.8GW,占全球比重 44%,累计并网容量达 到 230GW。

  2019 年,全球海上风电新增装机容量超过 6GW,是有史以来表现最好的一年。其中,我国的新增规模达到 创纪录的 2.3GW,居全球第一。英国的新增规模接近 1.8GW,依然是全球重要的海上风电市场。德国的新 增规模超过 1.1GW,居全球第三。

  就中国市场而言,由于存量项目需赶在 2020 年 12 月 31 日前并入电网,以拿到核准电价,故此 2020 年有望成 为中国陆上风电市场有史以来表现最好的一年,从 2021 年开始,中国陆上风电市场发展主要受平价上网项目驱 动,继续引领世界风电市场。

  我们判断中国风电行业的蓬发展将成为碳纤维市场有力驱动器,促进民用碳纤维需求走高。

  车身轻量化:碳纤维密度小,较低碳钢结构减重 50%,较镁/铝合金结构减重 30%;

  颠覆生产流程:模压和粘结工艺代替冲压和焊接,节约生产线及模、夹具的投入;

  集成度高,造型自由:可设计性强,可实现流线型曲面成本低,可减少零部件种类和工装投入;

  提升汽车安全性:汽车轻量化后中心下降,提升操作稳定性,碰撞吸能能力为钢的 6-7 倍,铝的 3-4 倍;

  提升汽车舒适性:更高的振动阻尼,对汽车整体降噪效果提升显著,舒适性更加。

  据中国汽车工程学会发布的《节能与新能源汽车技术路线 年,我国将实现整车比 2016 年减重 35%,将重点发展镁合金和碳纤维复合材料技术,实现碳纤维复合材料混合车身及碳纤维零部件的大范围 应用。

  以传统大小丝束市场来分,我国小丝束市场容量约 1.8 万吨,其中国产约 0.7 万吨;大丝束市场容量约 1.4 万吨, 其中国产 0.1 万吨;另有接近 0.5 万吨左右国产碳纤维横跨两个市场。

  目前我国国产碳纤维供应量已连续两年增幅超过 30%,体现出国有碳纤维企业生产技术和管理水平的巨大提升, 预计在 2025 年左右,我国碳纤维国产量将超越进口量。

  2019 年大陆从日本进口碳纤维 0.8 万吨,占总需求的 20.3%;从中国台湾进口碳纤维 0.6 万吨,占总需求的 15.0%,中国台湾与日本成为除大陆本土以外的碳纤维最大供应地。

  对于航空航天等高端市场,产品性能是首要因素,据中简科技招股书表述,现阶段我国从事碳纤维材料研制及生产的单位近百家,但能够生产符合航空航天标准的高性能碳纤维企业屈指可数,大量企业集中在体育休闲领域,绝大多数碳纤维厂家仍处在亏损状态。随着市场经济优胜劣汰,碳纤维行业将面临洗牌,拥有自主知识产权和持续创新能力的企业必将在未来竞争中占得先机。

  目前国内能够生产高端碳纤维的厂商主要有中简科技、光威复材、江苏恒神及中复神鹰,其中中简科技和光威复材更是高端碳纤维赛道领跑者。我们认为,中简科技与光威复材的优势主要集中在以下三个方面:

  1)中简科技 2008 年为承担科技部“863 聚丙烯腈基碳纤维工程 化”重点项目而成立,随后便扎根高端碳纤维的研发与工程化制备,在国产化替代的理念下产品不断填补国内相关领域空白;

  2)光威复材 2002 年便开始碳纤维研发,承担两项 863 碳纤维专项的同时于 2008 年建 成国内首条千吨级碳纤维产线,成为国内首家实现碳纤维工程化的企业。

  1)中简科技实控人均为业内顶尖专家,董事长杨 永岗与总经理温月芳均来自我国最早从事新型碳材料研发的机构——中科院山西煤炭化学研究所,2013- 2019 年研发投入 6 年增长近 3 倍,授权专利总数超 20 项;

  2)光威复材深耕碳纤维研发近 20 年,期间作 为行业龙头主持了两项碳纤维国家标准的制定,产品覆盖了 T300/T700/T800/M40J 等一些列高端碳纤维, 且拥有核心设备的研发制造能力,是目前国内生产品种最全、技术最先进、产业链最完整的碳纤维行业龙头 企业之一。

  1)航空航天领域国外对我国实行技术与产品封锁政策,叠加新材料核心技术国产化趋势的持续演绎,头部企业 将获得更多发展空间和机遇;

  2)航空航天等高端领域对产品性能要求严苛,而国内仅有中简科技、光威复材等少数企业掌握核心技术可生产 出满足要求的材料,不可替代性不断增强;

  3)头部上市企业相较其竞争对手可从资本市场获得更多的支持,同时政策资源也必然将向头部有追赶国际巨头 潜力的公司倾斜,领跑者将获得更多卡位优势。

  日本是全球最大的碳纤维生产国,日本东丽、日本东邦和日本三菱丽阳拥有全球丙烯腈基碳纤维 50%以上市场份额,掌握世界顶尖碳纤维生产技术,产品的质与量均处于世界领先地位,而美国是继日本之后掌握碳纤维生产 技术的少数国家之一,同时又是世界上最大的丙烯腈基碳纤维消费国,约占世界总消费量的 1/3。

  据中国化学纤维工业协会统计,在小丝束碳纤维市场,日本企业所占全球产能的 49%;在大丝束碳纤维市场上, 美国企业所占全球产能的 89%。

  1)对于高端产品而言,当解决了“从无到有”的阶段性问题后,降低生产与获得成本将成为行业下一阶段的主题;

  此外,据《碳纤维产业释放良机 2019》表述,在碳纤维生产的全部过程中低成本、高效率、高质量可以实现并存,目前,国际上的干喷湿法的速度已经高达 600-700 米/分钟,国内也达到了 500 米/分钟,速度地提升会带来成本的 降低,但并不影响纤维的高性能;同理,对于湿纺工艺,东丽公司对卓尔泰克的原丝生产线提速一倍,国内的一些企业也可以实现 250-300 米/分钟的速度,对碳纤维的性能无不良影响,反而促进了性能的提升。

  PS:我们运营的资讯号 IPO早餐(ID:ipozaocan)每日发布最新鲜的IPO资讯,欢迎大家同时关注!

  前身创建于1998年,总部在深圳,并在北京、杭州、厦门、济南设有办公室。大象投顾是中国最早专注于IPO咨询的机构,也是目前市场占有率最高的机构。以当年在审企业及成功过会企业数量计算,公司已经连续9年排名第一。公司主要为拟上市公司及上市公司提供专业的IPO咨询服务、再融资咨询服务及并购咨询服务。具体内容包括A股IPO细分市场研究、IPO募投项目可行性研究、再融资募投项目可行性研究、并购标的可行性研究。基于自身强大的市场研究能力,我们同时也为拟赴香港及美国上市企业提供独立的第三方行业研究与分析服务。

  截至目前公司已服务上千家优质中国企业,包括公牛集团、欧派家居、美年健康、香飘飘、珀莱雅、豫园股份、杭可科技、东山精密、跨境通、奥飞娱乐、星辉娱乐、盈峰环境、海格通信、精测电子、创业惠康、香港珠宝、卓越教育等在内的500多家优秀企业成功在境内外长期资金市场上市,全面覆盖TMT、装备制造、医疗健康、消费品、能源化工、节能环保、汽车及零部件、文化娱乐等主要行业。

  公司先后荣获国务院发展研究院年鉴指定行业研究机构、年度最佳IPO咨询服务机构、金融咨询服务最佳供应商等多项殊荣,同时也是深圳市上市公司协会、浙江省上市公司协会等协会的《上市公司发展白皮书》指定编著单位。

  平台声明:该文观点仅代表作者本人,搜狐号系信息发布平台,搜狐仅提供信息存储空间服务。

联系乐鱼体育网页版登录入口

全国服务热线:0574-86097620 邮箱:market@bwmjyz.com

  工作日 9:00-18:00

关注我们

官网公众号

官网公众号